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ABSTRACT
The growing demand for automation has sparked interest in multi-

robot systems that can handle complex tasks through collaboration.

While these systems offer advantages in speed, coverage, and capa-

bility compared to single robots, getting multiple robots to learn

and coordinate effectively remains challenging — training robots

requires extensive effort on data and computation, and learned

policies often struggle to generalize beyond training conditions.

My research addresses two fundamental challenges in multi-robot

learning: reducing the training effort required and improving gen-

eralization to reduce policy retraining. First, we propose methods

to make training more efficient — using human-drawn sketches

rather than teleoperated demonstrations for manipulation tasks,

and utilizing individual robot demonstrations instead of joint multi-

robot ones for learning collaborative behaviors. Second, we develop

techniques to help learned policies adapt to new scenarios without

retraining — introducing frameworks that maintain coordination

under different observation conditions and enable effective infor-

mation sharing across varying initial states. My work aims to create

more practical and adaptable multi-robot systems that can be effi-

ciently trained and deployed across diverse real-world settings.
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1 INTRODUCTION
Multi-robot systems are becoming essential in applications from

warehouse automation to search and rescue, offering advantages in

speed, coverage, and capability compared to single robots [7, 12, 17].

However, getting multiple robots to learn and coordinate effectively

remains a fundamental challenge. While multi-agent reinforcement

learning (MARL) [23] provides a framework for training robot

teams, it faces several key difficulties limiting practical application.

The first major challenge is the substantial training effort required

for effective coordination. As the number of robots increases, the
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state-action space grows exponentially, making exploration ex-

tremely difficult — robots must learn not only their individual tasks

but also how to coordinate with teammates. To address this chal-

lenge, current approaches often rely on collecting demonstrations

where multiple human experts control the robots simultaneously

to show desired coordination patterns [14, 15]. However, such joint

demonstrations are time-consuming to collect and must be recol-

lected whenever the team composition changes. The second major

challenge persists even after successful training — learned behav-

iors often fail to generalize beyond training conditions. Changes in

observation conditions, initial states, or team configurations [16]

can severely degrade performance. This brittleness forces robots

to either undergo constant retraining or operate only in highly

controlled environments, limiting their real-world applicability.

My research addresses these fundamental challenges in multi-

robot learning through two main directions: (1) Reducing initial

training effort by developing methods that leverage more accessible

forms of human guidance — using simple 2D sketches for robot

manipulation and individual demonstrations for team behaviors; (2)

Improving generalization to reduce retraining effort by developing

frameworks that enable learned policies to maintain coordination

across varying conditions. These advances would significantly im-

pact real-world robotics applications. Lower training effort means

multi-robot systems become accessible to a broader range of users

and applications, not just specialized settings with abundant re-

sources. Better generalization capabilities allow robots to adapt to

changing conditions without requiring constant retraining, making

them more practical for dynamic real-world environments.

2 LESS TRAINING EFFORT
Learning from Demonstration (LfD) [1, 5, 10] has emerged as a

key approach for efficient robot training, allowing robots to learn

directly from expert behaviors rather than requiring extensive trial-

and-error exploration. However, demonstration collection remains

a major bottleneck. For manipulation tasks, they typically rely on

kinesthetic teaching [4, 9] or teleoperation [13] requiring special-

ized hardware and expertise. For multi-robot coordination, they of-

ten needmultiple experts controlling robots simultaneously [14, 15],

which scales poorly as more robots are added. These requirements

create significant barriers to deploying robot systems in practice.

For robot manipulation tasks, we observe that humans natu-

rally communicate motion ideas through simple 2D sketches - like

drawing a path to show how to navigate or demonstrate a desired

motion pattern. Previous works have explored leveraging sketches

in robotics in different ways. For example, RT-Trajectory [3] uses

sketches to condition policies in imitation learning, while Zhi et al.

[24] proposed diagrammatic teaching that directly fits and executes
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trajectories from sketches. However, these approaches are limited

to replicating the provided sketches and require new sketches for

each task execution. We developed Sketch-To-Skill to leverage

sketches more broadly in reinforcement learning. The framework

first learns to map 2D sketches to 3D trajectories through a pre-

trained generator. These trajectories enable autonomous collection

of initial demonstrations through open-loop servoing. We then

utilize these sketch-generated demonstrations in two ways: to pre-

train an initial policy through behavior cloning and to refine this

policy through reinforcement learning with guided exploration. We

evaluate our approach on six manipulation tasks in MetaWorld [22]

including tasks that require precise gripper control like BoxClose

and CoffeePush. Despite using only basic sketches as input and

no explicit gripper information, this approach achieves ∼96% of

the performance of policies trained with teleoperated demonstra-

tions while exceeding pure reinforcement learning performance by

∼170%. We further validate our approach on physical UR3e robot

hardware on several real-world task, achieving an ∼80% success

rate in randomized settings.

In multi-robot coordination tasks, collecting joint demonstra-

tions becomes increasingly challenging as team size grows. Re-

cent works like MAGAIL [14] and DM2 [15] have explored using

demonstrations to guide multi-agent learning, but they can only

converge when using joint demonstrations from co-trained policies,

which naturally provide compatible behaviors. When demonstra-

tions come from mixed sources, the behaviors can conflict, prevent-

ing successful learning. Additionally, when team configurations

change or new agents are introduced, demonstrations must be rec-

ollected. We developed PegMARL [20] to address these challenges

through personalized demonstrations — demonstrations that show

individual agents performing their tasks independently rather than

as part of a team. This approach offers natural scalability: agents of

the same type can share demonstrations regardless of team size, and

new demonstrations are only needed when introducing new types

of agents. Our framework leverages these personalized demonstra-

tions through two discriminators: a personalized behavior discrimi-

nator that provides positive incentives for actions that align with

demonstrations and negative incentives for divergent ones, and a

personalized transition discriminator that adjusts these incentive

weights based on whether actions lead to desired state changes

similar to those observed in demonstrations. Together, these enable

robots to learn effective coordination strategies even though the

demonstrations don’t explicitly show cooperative behaviors. Our

experiments demonstrate PegMARL’s effectiveness across different

scenarios. In gridworld environments, PegMARL with personalized

demonstrations shows faster convergence than baselines and better

scaling with increasing agent numbers. We further validate our

approach in StarCraft [11] multi-agent scenarios, where PegMARL

converges effectively even with joint demonstrations from mixed

sources, showing its ability to bootstrap from and improve upon

provided demonstrations.

3 LESS POLICY RETRAINING EFFORT
Even after successful training, learned multi-robot policies often

fail to generalize beyond training conditions. Changes in observa-

tion conditions, initial states, or team configurations can severely

degrade performance. Current approaches typically require com-

plete retraining for each new scenario or extensive fine-tuning,

making deployment impractical for real-world applications where

conditions frequently vary.

Drawing inspiration from how humans adapt their communica-

tion based on what information others need, we developed TACTIC

[21], a Task-Agnostic Contrastive pre-Training framework for Inter-

agent Communication. Our approach enables agents to maintain

coordination even when sight ranges during execution differ sig-

nificantly from those during training. TACTIC consists of two key

stages: offline contrastive pretraining and online policy integration.

In the pretraining stage, we train two key communication modules

— a message generator and a message-observation integrator — us-

ing contrastive learning [6]. The objective aligns the integration

of local observations and messages with the full egocentric state

for each agent, enabling agents to effectively “see” beyond their

limited sight ranges through communication. During online policy

learning, these pretrained communication modules are frozen and

incorporated into agents’ policy learning, enabling dynamic com-

munication adaptation while preserving the learned task-agnostic

properties. We evaluate TACTIC in the SMACv2 [2] benchmark

across different scenarios and sight ranges. Unlike baseline methods

that struggle to generalize across sight ranges, TACTIC maintains

consistent performance by learning to communicate task-relevant

information effectively - for example, achieving stable win rates

across varying sight ranges in combat scenarios where traditional

methods’ performance drops significantly.

In multi-agent systems, agents are also prone to failure when

faced with shifts in state distribution. To address this, we developed

an approach based on Common Operating Picture (COP) integra-

tion [19]. Each agent is equipped with the capability to integrate

its observations, actions, and received messages into a COP that is

dynamically updated to reflect the environment and mission. This

process takes into account both current observations and historical

information. Rather than directly communicating local observa-

tions which can overwhelm communication channels, agents share

processed summaries that help maintain a consistent global un-

derstanding. Our results in StarCraft2 [11] show that COP-based

training produces robust policies that significantly outperform state-

of-the-art MARL methods under out-of-distribution initial states.

4 CONCLUSION AND FUTURE RESEARCH
This research develops methods to make multi-robot learning more

practical by reducing training effort and improving generalization.

We have shown that sketches and personalized demonstrations can

effectively replace more complex training data, while frameworks

for information sharing with a focus on global awareness enable

better generalization across varying conditions.

Our future work will explore zero-shot generalization [8, 18]

in multi-robot systems. As large language models exhibit strong

ability to understand and generate human instructions, we aim to

investigate how these models can help robots better understand

team dynamics and adapt to new partners. The goal is to create

truly adaptable robot teams that can coordinate effectively with new

teammates without requiring additional training, making deploy-

ment more flexible across different configurations and scenarios.
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